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ELECTROSTATIC PARTICLE-IN-CELL SIMULATION TECHNIQUE 
FOR QUASINEUTRAL PLASMA 

1. Introduction 

In particle-in-cell (PIC) simulations of plasmas, the standard technique " for 

calculating the electrostatic field is to solve Poisson's equation, with the charge density 

source term determined by the laydown of the densities of electrons and ions, n,. and nj. 

This procedure works well when the phenomena of interest proceed on time scales 

comparable to the electron plasma frequency ct\> and spatial scales comparable to the 

Debye length A,D, and when there is substantial charge separation between electrons and 

ions. However, there are many plasma problems where the time and space scales are very 

much longer, and where the plasma maintains quasineutrality throughout, i.e. tae-nil« nj. 

In these situations, it can be extraordinarily inefficient, or even unfeasible, to use 

Poisson's equation. 

One problem is that the simulation supports electron plasma oscillations, and 

therefore the time step must be less than 2(%*1 for stability.4 In many situations, electron 

oscillations play no role in the phenomena of interest, and the shortest time scale that is 

actually of interest may be the period of a low-frequency wave, an ion time scale, a 

collisional time scale, or a time scale for electron transport over some macroscopic 

length. These time scales may be several orders of magnitude longer. Implicit 

algorithms5"11 have often been used to avoid resolution of the electron plasma oscillation 

time scale. However, PIC simulation techniques also face a more fundamental difficulty 

arising from the circumstances of quasineutrality. The charge separation between 

electrons and ions, lie - nj, is often less than 10"5 of the density of either electrons or ions. 

If the electrons and ions are represented by simulation macroparticles, any attempt to 

calculate the potential directly from Poisson's equation would be futile, and overwhelmed 

by statistical noise. For example, in a million-particle 2D simulation with a 100 X 100 

grid, there are typically 100 macroparticle electrons or ions in each cell. The physically 

correct value of the difference between the number of electrons and ions in the cell would 

be on the order of 10"3 macroparticles, clearly unresolvable, whereas the statistical 

fluctuations within the cell would be on the order of VIÖÖ macroparticles, which is four 

orders of magnitude larger than the actual value. Numerical schemes involving Poisson's 
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equation are obviously very difficult (and actually inappropriate) in the quasineutral limit. 

Indeed, Chen12 noted long ago that, "In a plasma, it is usually possible to assume ne = nj 

and VE*0 at the same time. This is a fundamental trait of plasmas, one which is 

difficult for the novice to understand. Do not use Poisson's equation to obtain E unless it 

is unavoidable!" 

Over the years, this advice has been applied in many analytic and numerical 

models which represent the plasma as a fluid, or represent the electrons as either a 

dielectric medium or a fluid within some hybrid scheme.13"15 Methods have been 

developed which circumvent the use of Poisson's equation by neglecting electron inertia 

and determining E from the resulting simplified electron momentum conservation 

equation. In these models, nj is determined from dynamical equations, but n,. is not 

separately calculated; it is simply set equal to ns to maintain quasineutrality. This 

procedure eliminates temporal scales on the order of the electron plasma frequency, as 

well as spatial structures on the Debye length scale. However, in fully kinetic models, 

and in particular in PIC simulations, the electron density is calculated directly by the 

simulation, and the usual approach has been to calculate <j> from Poisson's equation. 

We have developed a new approach to the simulation of quasineutral plasmas with 

particle electrons and particle ions. Our approach is motivated by the quasineutral fluid 

techniques described in the previous paragraph, and our objective is to use grid spacing 

wide compared to the Debye length, and time steps long compared to the electron plasma 

frequency. We believe that the technique can be used to treat a wide variety of plasma 

problems. However, the primary objective of our present work is multi-dimensional 

overall modeling of an electron cyclotron resonance (ECK) reactor used for plasma 

processing. The plasma in this case is bounded, partially ionized, collisional, and 

magnetized, with a typical plasma density 1012 cm'3, electron temperature several eV, and 

neutral density several times 1013. The scale size of the reactor is tens of cm (>10 XD), 

and the time scales of interest range from 10 ns (electron transit times over cm size 

features, and electron collision times) to hundreds of us (chemical equilibration), while 

Ao = 10"3 cm (Op1 = 10"11 sec. In recent years, there has been considerable interest in the 

use of particle-in-cell/Monte Carlo (PIC/MC) codes to model this type of plasma 16-25 



Like pure PIC codes, these have typically used Poisson's equation to determine the 

electric field. In the present paper, we discuss only the method for determining the 

internal electric field within an unmagnetized bulk plasma, or parallel to the magnetic 

field in a magnetized bulk plasma. In subsequent publications, we shall discuss self- 

consistent techniques for dealing with sheaths, collisions and chemistry, and with cross- 

field transport in a magnetized plasma, within a multidimensional quasineutral 

framework. 

2.  Calculation of the Electric Field 

A. Unmagnetized One-Dimensional Plasma 

For simplicity, we shall consider a one-dimensional system specified by Cartesian 

coordinate z, although the formalism can be extended to multi-dimensional systems. We 

assume that the simulation is globally quasineutral, i. e. the total number of electrons is 

equal to the total number of ions. We also assume that the electron Debye length is small 

compared to any scale length resolved in the model, and the electron plasma frequency is 

fast compared to any time scale resolved in the model. Thus, if there were any departure 

from local quasineutrality, the resulting strong electric field would drive electron currents 

to restore quasineutrality within a time scale of several electron plasma periods, i.e., 

essentially instantaneously on the time scale of the model. Thus, the electric field always 

takes the value necessary to keep the electron density ne equal to the ion density nj. To 

specify this electric field, we can begin with the electron momentum conservation 

equation, 

-eE = ^- + vemeue+—3-(nemeue). (1) 
ne dz ne dt 

Here, Pe(z,t), ue(z,t) and ve(z,t) are the electron kinetic pressure (including flow terms), 

the electron fluid velocity, and the mean electron momentum transfer collision frequency, 

which can be specified as integrals over the electron distribution function fe(z,v,t), 



Pe(z,t)sjdvmev
2fe(z,v,t), (2a) 

ue(z,t)sjdvvfe(z,v,t), (2b) 

ve(z,t)==Jdvv(z,v,t)fe(z,v,t). (2c) 

These integrals, which appear in the first two terms on the right hand side of Eq. (1), can 

be evaluated at each point of the grid, by laying down the mean quantities for the 

electrons assigned to that grid point. [The collision frequency v(z,v,t) represents a sum 

over the various collisional processes which are represented in the simulation as Monte 

Carlo events, dynamical friction, etc.] 

The first two terms on the right-hand side of (1) represent the ambipolar electric 

field, which balances the electron pressure gradients, flow gradients, and frictional forces. 

For low-frequency plasma processes which maintain quasineutrality (the only type of 

processes we wish to follow), the inertial term [last term of Eq. (1)] is smaller by order 

me/mi. In a quasineutral fluid formulation, the inertial term would be neglected, and the 

ambipolar field would be used in the ion dynamical equations to calculate nj at the next 

time step. Then rie would simply be set equal to n;. However, this is not quite sufficient 

in a particle simulation, where the electrons and ions evolve separately during each time 

step. With E set equal to the ambipolar field, n-(z,t) remains constant in time (except for 

statistical fluctuations), while the ion density ni(z,t) gradually evolves because of the 

relatively slow ion motion. Thus the ambipolar field alone will not maintain the 

quasineutrality relation 

n.(z,t) = ni(z.t). (3) 

Even worse, particle simulations are always subject to statistical fluctuations in the 

density and flux of any species at any given grid point, typically of the order of VN , 

where N is the number of particles in a grid site. Thus, a particle simulation code must 



contain some mechanism for stably maintaining the quasineutrality relation (3) in the face 

of these fluctuations, which are of much larger order than nVnii. 

We have found that for low-frequency phenomena the kinetic information of 

interest is essentially contained in the ambipolar field, and that the last term of (1) serves 

only the functional purpose of keeping n«. equal to ni. This opens up the possibility of 

keeping the ambipolar field but using an approximate technique to maintain Eq. (3), 

rather than calculating the actual inertial term. In earlier work,26 we have experimented 

with the technique of pushing the both the electrons and ions in the ambipolar field alone, 

and then applying an approximate correction field to the electrons which restores the 

quasineutrality condition. This worked well, and we were able to prove that kinetic 

properties such as the Landau damping of ion sound waves were preserved. However, 

this approach can become somewhat complicated, especially when care is taken to 

conserve energy exactly. In the present paper, we describe an approach which is even 

simpler, works extremely well over very long times, and has excellent stability and energy 

conservation properties. This approach is simply to replace Eq. (1) with a modified form 

of the ambipolar field, 

1  3 
•eE = — T"(niTe) + vemeue, (4) 

nj dzx      ' 

where the electron kinetic pressure Pe(z,t) e ne(z,t)Te(z,t) is replaced by ni(z,t)Te(z,t), 

using the ion density instead of n«. Here, Te is a kinetic temperature (including flow 

terms), defined as 

ne(z, t)Te(z, t) a J dvmev
2fe(z, v, t). (5) 

This simple artifice causes the electron density to remain closely coupled to the ion 

density. This can be seen by writing the electron momentum conservation equation in the 

form 



me^ +—!>eTe) + eE + vemeue =0. (6) 
3t     ne 3z 

Using Eq. (4) for E, this gives 

3ue    „, 3 „ 
me-T

s- = Te— £n e 3t       e3z 

ni 

vncy 
(7) 

Equation (7) shows that the electrons are always accelerated up the gradient n^n,. i.e. 

toward the point of maximum positive charge density. The result is that the electron 

density oscillates about the ion density. Although these oscillations are unphysical, they 

are rapid and the oscillation amplitude should remain small if the system is started in a 

quasineutral state and the time step is small enough. The stability properties of these 

oscillations will be discussed in Sec. 3, and examples will be given in Sees. 5 and 6. 

B. Strongly Magnetized Electrons 

In the application which we are studying, ECR plasma sources, the electrons are 

strongly magnetized, with gyrofrequencies comparable to % and gyroradii comparable to 

the Debye length. Since we do not wish to resolve these short time and space scales, it is 

convenient to use a guiding center representation of the electrons. An electron is 

characterized by its coordinate £, the curvilinear coordinate along the field line, its 

parallel velocity vi = d^/dt, and the magnitude vj. of its perpendicular velocity. However, 

in practice is more convenient to use the electron's magnetic moment (i = mv± /2B as the 

independent variable, rather than v±, since p. is an adiabatic invariant. Here, B is the 

magnitude of the magnetic field. The equation of motion for an electron, between 

collisions, includes a mirror force term and is 

dv» ^ 3B (Z\ 



Within our quasineutral formulation, the electric field component parallel to B is then 

specified by the electron momentum equation in the form 

B  9 Peii    -dB 1   9/ \ ,Q, 
-eE» = nT^lBT + ^ + VerneUe,l+^är^meUe^ (9) 

where Pe» and Pd. are the electron kinetic pressure parallel and perpendicular to B, and \i 

= Tei/B is the mean magnetic moment for electrons at a given location. [Note that the 

mirror force vanishes from Eq. (9) if Peii = Pex-] As in the previous section, we simply 

drop the inertia! term in (9) and replace Peti by njTc, so that E» is specified by the equation 

B 3 njTeH    _3B nm 

The determination of the transverse electric field Ej. involves the ion dynamics and, in the 

case of a bounded plasma in a conducting vessel, also couples to the sheath potentials. 

This will be discussed in a subsequent publication. 

3. Formal Analysis of Mode Structure and Stability 

A. Linearized Normal Modes 

To elucidate the way in which the electric field from Eq. (4) or Eq. (10) couples 

the electron and ion densities, we shall examine the linear normal modes supported by the 

system. Assuming an equilibrium with uniform density no and temperature To, 

linearizing Eq. (4), assuming normal modes of the form e
l(kz(nt), and neglecting collisions, 

we have 

-eE = ikTe+^ni. (11)  ^ 
no 



In this analysis, we use linearized cold fluid equations for the ions, so that 

n     
iknoeE (12) 

11:  —        o • N 

co nij 

Combining Eqs. (11) and (12), we find 

eE = - TV-T- (13) 
l-k2cs

2/co2 

To complete the analysis, we use the linearized Vlasov equation for the electrons, 

afA + vafA_noeE3^ = ()} (14) 

3t        9z      me   9v 

where F0(v) is the normalized equilibrium electron velocity distribution and fe(z,v,t) is 

now the first-order perturbation. Using (13) in (14), we find 

f=_JL I 5L^_ (15) 
me l-k2cs

2/co2 v-co/k 

Te can be calculated by using 

ne=Jdvfe(v) (16> 

and 

neT0 + n0Te = J dv mv2 fe(v). (17) 

Using (16) and (17) in (15) yields a dispersion relation 



1— 
CO2 

dv(v2-ve
2)F0(v)    0 (18) 

v-co/k 

We note first that if cs -» 0, so that the ions are immobile, then 

co = ±kve (19) 

is a pair of exact solutions of Eq. (18). Here, ve = ^Te I me is the electron thermal 

velocity. This mode represents the unphysical high frequency oscillations that keep the 

electron density closely coupled to the ion density. However, the oscillation frequency a> 

is much smaller than %. In a simulation with spatial grid scale Az, the frequency is 

limited to a>< Ve/Az, and if there is any spatial smoothing the highest-k modes are strongly 

damped, so that the highest meaningful frequency is actually much less. In a typical 

application such as our ECR simulations, Az may be about 1 cm, and v„/Az of the order of 

108 sec"', as compared to oty of order 1011 sec"1. 

We next examine the mode structure when cs * 0. To perform the integrals simply 

in closed form, we assume that F0(v) is a Lorentzian distribution, 

F„(v>4-TT^f- (20) 
7C V   +Ve 

Then Eq. (18) becomes 

k2c ?        2 1_   ^ 
co2 it 

dxx(l-x2) ^ 
(l + xzr(x-Q) 



where x ■ v/ve and Q. = (O /kve. The contour for the integral in Eq. (21) can be closed 

above, and according to causality the pole at x = Q is to be enclosed in the contour, even 

if Im Q is negative. Using the method of residues, Eq. (21) reduces to 

1- 
me   1        2Q2-ifi(l-Q2) 
nij Q2 

= 2- 
(1 + Q2)2 

(22) 

If we multiply out the denominators in (22), we obtain a sixth order polynomial 

equation, 

m„ 
Q2(l + n2)2-4ß4 + 2iQ3(l-Q2) = -^(l + a2)2. 

m: 
(23) 

We know that two of the roots lie at Q =±1 if me/mi-»0. Assuming that these two roots 

lie close to ±1, a perturbative solution gives 

oo = kv, + l + i: 

v 

me 

m 
(24) 

ij 

These modes are thus seen to be slightly unstable, by order nVmi. This is not significant; 

the mode growth is so slow that it is obliterated by any of a number of incoherence effects 

(and in fact the entire formalism is based on neglect of higher order in mjm-) For 

example, we shall see in the next subsection that even the slightest degree of spatial 

smoothing damps the mode. 

Next, we look for low frequency modes with IQI«1. Keeping only lowest order 

in fi in the real and imaginary terms of Eq. (23), we find one pair of low-frequency roots, 

/ 

oo = kcc 

\ 
. /m„ 

v        Vmi j 
(25) 

10 



These are the ion sound modes, with the correct dispersion relation in the limit XD -> 0, 

and with the correct representation of electron Landau damping for the Lorentzian 

distribution (20). We show in the Appendix that when a complete Vlasov treatment is 

used, both electron and ion Landau damping terms appear correctly, and ion sound 

instability is also correctly represented if there is electron-ion streaming. 

The last two roots of the sixth-order equation (23) are a double root at Q = i. 

However, this is a spurious root, which is not a root of the original equation (22). Thus 

the formalism supports only two pairs of modes. One pair is the ion sound mode, 

correctly represented. The second pair of modes are the (unphysical, but essentially 

stable) high frequency modes which tightly couple n«. to nj and thus preserve 

quasineutrality. 

B. Effect of Spatial Smoothing 

In practice, we find that it is necessary to apply some spatial smoothing to the 

electric field,27 to overcome the fluctuations introduced by particle statistics and enhanced 

by the derivative operation in Eq. (4). One might wonder about the effect of smoothing 

on the stability of the scheme. Thus we reexamine the mode structure in the presence of 

smoothing. 

The smoothed electric field E may be represented as 

E(z) = £. dz' K(z - z') E(z'), (26) 

where E(z) is given by 

-eE(z)=Ä+3Ä (27) 
dz     nn dz 

11 



and K(z-zO is some symmetric kernel normalized to unity. In Fourier representation, the 

convolution becomes simply 

- eEk = -eEkKk = ikKkTe + ikKk — n4. (28) 
nf 

Note that the Fourier transform K* is always real, and 1 > IKfcl for all k. If the width of the 

smoothing kernel K(z) is narrow compared to k"1, then Kk ->1 and the effect of smoothing 

vanishes. Using (28) in place of (11), we can retrace the derivation of the dispersion 

relation (22). We obtain the modified form 

m„   1 
mj Qz 

= 2K, 
2Q2-iQ(l-Q2) 

1~Kk1"r12~'"vk /i  . *"»2N2 (1 + QT 
(29) 

Equation (29) can be solved in the same way as (22). Again, there are four genuine roots. 

The two high-frequency modes which couple the electrons to the ions are now 

GH = kv, ± ,j(2-Kk)Kk - i(l - Kk) + order 
m„ 
m 

t/ 

(30) 

These modes are now seen to be damped as long as 1-Kk > order (nVmO, so the electrons 

should follow the ions in a quiescent fashion. The two low-frequency solutions of (29) 

are 

(Dk=kcsKk 
1/2 ±l-iKk

3'%P 
Vin, 

(31) 

Thus, as might be expected, the ion sound waves experience a reduction in frequency and 

in Landau damping, if there is smoothing on a scale comparable to the wavelength. 

12 



Obviously, if one wishes to resolve sound waves of a given wavelength, smoothing 

should only be applied on smaller spatial scales. 

4. Numerical Implementation 

The choice of time steps is limited by a number of considerations, in addition to 

the obvious requirement that the time step resolve any time scale of interest, such as a 

wave period, (i) Accuracy requires that during a single time step, particles not traverse a 

range over which the electric field, or other macroscopic variables, change significantly, 

(ii) If collisions are an important aspect of the problem, and Monte Carlo methods are 

used to model them, the time steps for each species must also be limited to a fraction of 

the collision time. Both of these conditions typically allow the ion time step to be longer 

than the electron time step by a factor of the order of (mj/iric)172. (iii)In addition, we have 

seen that Eq. (4) couples the electrons to the ions by inducing rapid stable electron 

oscillations with phase velocity equal to the electron thermal velocity ve. Since these 

oscillations can be excited by statistical fluctuations in a single cell, a conservative 

procedure to avoid numerical difficulties is to choose the electron time step no larger than 

the cell size divided by ve, and to recalculate the electric field acting on the electrons at 

each electron time step. In practice, we have found that these conditions should be 

satisfied in the most stressing situations, such as the collisionless simulations presented 

later in this paper. Collisional situations generally are more forgiving, and appear often to 

allow longer time steps. Thus, to summarize, we use relatively long ion time steps, 

chosen to satisfy conditions (i) and (ii), and subdivide these time steps, typically by a 

factor of the order of (mi/me)1/2, to obtain electron time steps that satisfy all three 

conditions. These conditions permit electron time steps that are typically three orders of 

magnitude larger than the time steps At < 2/cOp that are needed for conventional PIC codes. 

The ion time steps are even larger, and in addition the spatial grid scales can be orders of 

magnitude larger than A©. 

The electric field is calculated as a grid quantity at each electron time step, from 

Eq. (4), or Eq. (10) if the plasma is magnetized. This electric field is then applied directly 

13 



to the electrons at each time step. To push the ions over a long ion time step, an electric 

field is used which is simply the average of the electric fields at each of the electron time 

steps during this ion time step. Thus there is significant temporal smoothing of Eq. (4) or 

(10), primarily a smoothing of the fluctuations in Te, which helps to reduce statistical 

fluctuations in the ion motion. 

The electrostatic potential energy of the plasma is jdV (n; - ne) ety, and therefore 

is zero to the extent that exact quasineutrality is maintained. Thus, in the absence of 

inelastic scattering, the total kinetic energy should be conserved. This presumes, of 

course, that the electrons and ions see exactly the same electric field. However, energy 

conservation is preserved even if the electrons are pushed subject to the instantaneous 

electric field, and the ions to a time-averaged field, as long as the time averaging is 

properly centered over the ion time step. In practice, the oscillation of the electrons about 

the ion density profile means that quasineutrality is not exactly satisfied at any given time 

step, and correlations are possible which lead to long-term drifts in the total kinetic 

energy. However, these are very slow and can be controlled by giving proper attention to 

maintaining a sufficient number of simulation particles and adequate spatial smoothing. 

Some examples will be given. 

For the collisionless examples below, we have used a large number of particles 

per grid point, ranging from an average of 500 particles per cell for free expansion to 

2400 per cell for the ion acoustic wave. However, in our 2D ECR simulation code, where 

there is significant electron collisionality, we get good results with about 200 particles per 

cell. We use a linear laydown for both the electrons and the ions. The ion density and the 

pressure are smoothed using standard filtering techniques.1 The algorithm for pushing 

the particles is a centered difference scheme. The electrons are subcycled with typically 

32 electron time steps for each ion time step. For the examples shown here, the system is 

periodic, but in our ECR code the same method is used for a bounded system. 

14 



5. An Example: Free Expansion of a Plasma 

To illustrate the use of the quasineutral formulation, we consider a test problem 

which can be solved exactly, and also can be solved analytically within our formulation. 

Consider the free expansion of a plasma consisting of hot isothermal electrons and cold 

ions, beginning with a Gaussian spatial profile in one dimension: 

(    ~i\ 
fi(z,v,0) = 

VKL0 

exp 8(v), 
I   4; 

(32a) 

f'(z'v'0) = V^J^exp mev 2\ 

2T, Oe ) 

(32b) 

Even though this is a problem that is easily solved analytically, it poses a stiff challenge 

to a particle simulation, since there is a wide range in plasma density, and we assume 

there are no collisions. (Collisions make it much easier to implement this type of 

technique, by smoothing out statistical fluctuations.) 

A. Analytic Treatment: Exact Quasineutrality 

An exact solution to the Vlasov equation, with initial conditions specified by Eqs. 

(32), can be found in closed form. It corresponds to self-similar isothermal expansion, 

fj(z,v,t) = 
VÜLi(t) 

exp 
,2   ,\ 

Li2(t) 
v-- zLj(t) 

Li(t) ) 
(33a) 

1 m. 
f^v-t)=;^te>exp 

m 

Le
2(t)    2Te(t) 

v- 
zLe(t) 

Le(t) ) 
(33b) 

15 



The expansion is driven by the electron pressure, with the ions dragged along by the 

electrostatic field. Thus a complete solution, using Poisson's equation, would show that 

Le(t) is larger than Li(t) by a small amount of the order of the Debye length. But to the 

extent that quasineutrality is observed, Le(t) = Lj(t), and Lj(t) and Te(t) are determined by 

conservation of momentum and energy as the solutions to 

L,(t) = 
2Te(t) 

mjLiCt)' 
(34a) 

Te(t) = Te(0)-imiLi
2(t). (34b) 

Equations (34) can be solved for Li(t) in closed form. For the initial conditions specified 

by Eq. (32), the solution is 

Li(t) = A/L0
2+2cs0

2t2 (34c) 

B. Analytic Treatment Using Our Model 

Within our model, with E given by Eq. (4), it is easy to show that the electrons 

and ions each expand self-similarly, as in Eqs. (33), but with U(t) not exactly equal to 

Li(t). Li(t) and Te (t) are given by Eqs. (34), but U(t) is given by 

Le = 2v; L      I2 
(35) 

Rewriting Eq. (35) in terms of A = (U-LO/Li, and subtracting (34a) from (35) gives 

(l*  .ANA        ~    ^ 

A = — 
2v. 

W 

(2 + A)A    me 

1 + A       m; 

(36) 
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The first term of Eq. (36) causes A to oscillate about an equilibrium point. The second 

term causes a very small offset to the equilibrium point. (Interestingly, this offset is 

negative, so that in this formulation the ions lead the electrons by a displacement of order 

me/mj.) Thus it is reasonable to assume IAI« 1 and simplify (36) to 

A = - (*^)\ (37) 

Equation (37) indicates that A oscillates at the rapid frequency (Do = 2ve/Li(t), and since (0o 

is fast compared to the time scale for ion motion, these can be considered to be simple 

harmonic oscillations at a slowly varying frequency. These oscillations are not physical; 

they are the mechanism for coupling the electrons to the ions within our quasineutral 

formulation (4). However, they are stable oscillations which normally maintain a very 

small amplitude (in fact, comparable to the statistical fluctuations that would otherwise be 

present due to the finite number of particles), and thus are of no real significance. As 

mentioned earlier, a conservative condition for numerical stability is that the time step be 

less than coo"1, and in fact, since statistical fluctuation can occur on length scales down to 

a single cell size Az, less than Az/ve. 

C. Numerical Simulation 

Figures 1-3 show the results of a numerical simulation of the free expansion 

problem, for a hydrogen plasma (mi/m- = 1836). However, it was not possible in the 

simulation to allow the plasma to expand into a true vacuum, since the electric field from 

Eq. (4) depends on the reciprocal of the plasma density. (The noisy electric field in 

regions with very low density eventually dominates the problem.) In order to control the 

noise, we added a low density floor (5% of the peak density) to the Gaussian density 

profile as can be seen in Fig. la. We use 200,000 macroparticle electrons and an equal 

number of ions, in a ID system 400 cells long.. The cell size is Az = 1 cm. The system is 

initialized in accordance with Eq. (32), with U = 14 cm and Te = 0.33 eV. The time step 
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is At = 25 ns. Figure 1 shows the electron density profile (solid curve) and the ion density 

profile (dashed curve) at t = 0 and t = 20 us. The deviations from quasi-neutrality are 

visible only at the peak density, and at the boundary with the low density background 

plasma. We note that the expansion is very nearly self-similar, as predicted. (Eventually, 

small deviations from self-similarity, due to the presence of the low-density background, 

become visible.) Figure 2 shows Lj(t) from the simulation. The x's show the analytic 

solution (34c) for Lj(t). We see that the expansion is smooth, and the analytic solution is 

well verified. Figure 3 shows plots of the total electron kinetic energy We(t), the total ion 

kinetic energy Wj(t), and the total kinetic energy W(t). We note that the effect of the 

expansion is to convert the electron kinetic energy (which is nearly all thermal) to ion 

streaming energy. Overall kinetic energy is conserved to within 4%. To the extent that 

quasineutrality is maintained, there is essentially no potential energy, since the electron 

potential energy is always exactly the negative of the ion potential energy. 

6. Second Example: Ion Sound 

Ion sound with wavelength much greater than A© is a simple example of a plasma 

mode that occurs on the ion time scale and maintains quasineutrality. It is therefore not 

an easy mode to simulate with a standard PIC code using Poisson's equation and a 

realistic value of me/mj. In Sec. 3 above, we used a simplified model (Vlasov electrons 

with Lorentzian distribution, cold fluid ions) to show that the ion sound mode is 

contained within our quasineutral model, and in the Appendix we provide a full Vlasov 

analysis that shows that the model gives exactly the correct dispersion relation, including 

electron and ion Landau damping terms. Here we show the results of simulations of ion 

sound within the nearly-linear and nonlinear regimes, with the mass ratio mi/me= 1836. 
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A. Standing-Wave Ion Sound fn the Linear Regime 

We initiate an ion sound standing wave by loading initial particle densities 

lie = m = no [1 + asin(2jtz/L)], <38) 

with the fluid velocities Ue and uj initially zero for both species. The simulation is done 

with periodic boundary conditions in a ID system of length 2L=25 cm, with cell length 

Az as 0.125 cm; thus, there are two wavelengths within the box, and 100 cells per 

wavelength. The wave amplitude is taken to be a = 0.05, and 2400 particles of each 

species are used, per cell. A very large number of particles is needed for this simulation 

to resolve the very small wave amplitude. The electron temperature is set to 133 eV, so 

that ve=4.8xl07 cm/sec, c, = l.lx 106 cm/sec, and the wave period should be Uc« = 11.3 

us. The ions are initially cold. The ion time step is 15.6 ns, and the electrons are 

subcycled 4 times per ion time step. 

The temporal evolution of the fundamental (wavelength L) Fourier mode of n«. and 

m is shown in Fig. 4. The densities are taken from the Fourier transforms of the 

instantaneous values of n^z) and ns(z) at the ion time step. We see that the wave period is 

11.1 us, in excellent agreement with the theoretical value. We note that at any given time, 

quasineutrality fo = nO holds to better than 5%. Plots of the spatial dependence of the 

wave (not shown) indicate that the two wavelengths contained within the box are exactly 

the same. 

Equation (A9) predicts Landau damping at the rate 9% per wave period. 

However, in a one-dimensional ion sound wave, even at wave amplitude a = 0.05, 

trapping of the resonant electrons interferes with Landau damping at a very early stage. 

The trapping frequency is ©T «JkeE/nie, and according to the linearized version of 

Eq.(4), E = koTe. Thus 

CO- = kcj^ = 9.6kcs, .    09) 
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and Landau damping should be over in a fraction of a wave period. The slight damping 

seen in Fig. 4 thus would seem to be the initial Landau damping, followed by a slower 

damping due to mode coupling to higher harmonics. The second harmonic (wavelength 

L/2) grows to a level of 10% of the fundamental after two periods, as shown in Fig. 4. 

This is in reasonable agreement with simple two-mode coupling theory, which predicts 

15% at this time, and consequent damping of the fundamental by about 1.5%. From a 

computational point of view, it is worth noting that the rate of mode coupling is found to 

be quite sensitive to the grid spacing. The simulation of Fig. 4, with 100 grid points per 

wavelength, shows qualitative agreement with theory, but a calculation with 25 grid 

points per wavelength shows substantially faster second harmonic growth and decay of 

the fundamental. 

B. Nonlinear Traveling Wave 

The nonlinear evolution of a standing wave is complex, but for traveling sound 

waves an analytic solution is possible via the method of characteristics. Since A© is set 

to zero within our model, the ion sound waves are nondispersive, and therefore the mode 

coupling theory is essentially the same as that of ordinary sound waves in a neutral gas, 

with Te playing the role of the gas temperature. (However, ion sound waves are 

isothermal,29 whereas sound waves in a molecular gas are adiabatic. Therefore the 

adiabatic constant y must be set to unity in the ion sound theory.) The velocity is found to 

be the solution of the implicit equation 

u(z,t) = u(z-u(z,t)). (40) 

It is well known that Eq. (40) leads to steepening of the density and velocity profiles, and 

ultimately to wave breaking when du/3z becomes infinite. For an initial sinusoidal 

profile 
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u(z,0)        . (2TCZ"\ 
 = asin -T— 

cs ^ L ; 
(41) 

this occurs when 

t = tbreak=- . (42) break    2jcotce 

In Fig. 5 we show the results of a simulation similar to those of the previous subsection, 

except that the wave amplitude is larger at a = 0.20 and a traveling wave is initiated by 

setting the initial ion fluid velocity as in Eq. (41). We note the steepening of the wave up 

to the point of breaking at about t = 9 usec, in good agreement with the theoretical 

prediction t = 9.04 usec. As the wave nears the breaking point, non-physical structure 

such as the ripple and sharp peak in Fig. 5b begin to appear. These features appear to be 

associated with finite spatial resolution, and limit the accuracy of determination of the 

breaking point by perhaps 1 usec. After wave breaking, the quasineutral theory is no 

longer correct, since A© length scales are relevant to the subsequent evolution of the ion 

acoustic shocks. 

7.  Conclusions 

We have presented a method for doing plasma simulations with particle electrons 

and particle ions, in the quasineutral limit. The method permits (indeed, it requires) the 

use of grid spacing long compared to XD and time stepping long compared to (ope" . We 

have demonstrated analytically that the method is stable (at least on a continuous time 

basis), and that it gives the correct dispersion relation for ion sound, including Landau 

resonance terms. We have also demonstrated the use of the method to simulate free 

expansion of a plasma, and linear and nonlinear ion sound. 

21 



We believe that the technique presented here should be useful for a variety of 

problems involving quasineutral plasmas. We are using this method in a 2D simulation 

code for magnetized plasmas, which includes in addition cross-field transport, sheaths at 

insulating or conducting walls, ECR heating, and collisions and chemistry. The 

techniques used to model these other aspects of the physics will be discussed in 

subsequent publications. The code runs for very long times (hundreds of |xsec), with time 

steps typically on the order of 10 nsec, and with running time typically on the order of a 

few hours on a IBM RS6000 workstation. 
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Appendix: Vlasov Theory of Ion Sound 

In this section we show analytically that our quasineutral formulation, using the 

approximate form (4) for E, gives exactly the correct dispersion relation for linearized ion 

sound waves, including even the Landau damping terms. 

Review: Vlasov-Poisson Theory of Ion Sound 

To clarify the issues involved, we begin with a brief review of the standard 

derivation of the ion sound dispersion relation from the linearized ID Vlasov equation, 

9k+v^.T££E^«=0) (A1) 
8t        dz     ma   3v 

with the upper sign for electrons and the lower sign for ions, and with the electric field E 

determined by Poisson's equation. Using a linearized normal mode representation for the 

perturbed part of the distribution function fa, we find 

"* ma    dv (ö-kv 

and the species densities no* are 

nak 
= i in0eE [ dvF0a (v) (A3) 

~ co - kv ma 

Inserting (A3) into Poisson's equation, 

ikEk = 47c(riek-nik), (A4) 

we obtain the dispersion relation, 
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0 = 1- 
co pe dv F0e (V) 

v-co/k 
CO p> dv Foi (v) 

v-co/k 
(A5) 

where causality indicates that the contours in Eqs. (A3) and (A5) go below the pole at v = 

co/k. The usual dispersion relation for ion sound can be obtained by making several 

approximations in Eq. (A5). First assume that the imaginary part of co/k is small. Let u 

(which may be zero) be the relative electron-ion drift, and assume that Foj(v) is a 

symmetric function of v, but Foe is a symmetric function ofwsv-u. Assume that Te» 

T5, u « ve, and Vj« co/k « ve. Then the first integral in Eq. (A5) can be treated by first 

extracting the contribution from the pole at v = co/k, and then expanding the remaining 

non-singular integral under the assumption that co/k « Iwl and u « Iwl for nearly all 

electrons: 

dvF0e (v) 
v-co/k 

r0e 
'[       CO 

-i7tFn„ I v=— | + 
dwF0e (w) 

w 

co/k-u   fco/k-u 
1 + + 

w w 
.(Aß) 

The second integral in Eq. (5) can be treated by first extracting the contribution from the 

pole, and then expanding the remaining integral under the assumption that co/k » Ivl for 

nearly all ions: 

j^-^(fKK<v{1+a=-*Fo,' ■'!H-<A7> 

Keeping only the leading term in the expansion (A6) gives the dispersion relation, 
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0 = 1- 
(0 pe 

2      1,2,..   2 

w        co2        co4    ' k2 tOpe^o/ffj + ö) pi'Foi [f J 

(A8) 

In the case of Maxwellian velocity distributions, this reduces to the familiar form 

kcc in kc. 
co = 2i    2N3/2 

(l + k2V)l//    2 O + k'V) 
be'- 

6  FnJ^I + ^Fni|^ 
Lme k;   m 

T. _ '[ © 
bi (A9) 

Quasineutral Derivation 

In the quasineutral context, the electric field is determined by the linearized form 

ofEq.(4), 

■eEk =— + TVnik-nekJ» 
no       no 

(A10) 

with 

pek = Jdvfek(v)mev
2 = in0eE 

dvF0i (v) 
co-kv 

(All) 

Using Eqs. (A3) and (All) in (A10), we obtain the dispersion relation 

0 = 1 + 
dv(v2 -ve

2)F0; 

v-co/k      '   °s 
dvF0i 

v-co/k 
(A12) 

Equation (A12) looks different from Eq. (A8). Nevertheless, using the expansions (A6) 

and (A7) but keeping all terms shown in (A6) gives 
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0 = - 
<Öpe2 

k2    ., 

* dwF0e 

w 

C0pi
2      k2(Opi

2            3      '     iTC 

-   J»   +     CD*     JdVV F0i -F (öpeV^fj + Wpi'Foi'^J 

(A13) 

Equation (A13) is identical to Eq. (A8), except for the absence of the first term on the 

RHS of (A8). This term is smaller than the other terms in (A8) by order k2A,D
2\ and thus 

disappears in the quasineutral limit kA© -> 0. 
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Fig. 1 — (a) Initial conditions for the free expansion simulation: n,.(z) and ^(z) at t = 0. (b) n,.(z) 
and ni(z) at t = 20 ftsec. In both cases, n^z) and ii^z) are essentially indistinguishable. 
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Fig. 1 (Continued) — (a) Initial conditions for the free expansion simulation: n,.(z) and n^z) at t = 0. (b) n^z) 
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Fig. 2 — Simulation result for expansion of the ion characteristic with Lj(t). 
The x's are the analytic result (34c). 
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Density profiles showing steepening of the traveling ion sound wave: 
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Fig 5 (Continued) - Density profiles showing steepening of the traveling ion sound wave: 
(a) t = 0, (b) t = 5.75 /*sec, (c) t = 9.0 /xsec. 
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Fig. 5 (Continued) — Density profiles showing steepening of the traveling ion sound wave: 
(a) t = 0, (b) t = 5.75 /isec, (c) t = 9.0 jisec. 

35 


